

Aktive Performance-Messungen in Wireless Netzwerken auf der Basis des IPPM-Frameworks

Roland Karch
2. Dezember 2005

Boppard am Rhein

Inhalt

- Motivation
- Messmethodik
 - Datengewinnung
 - Qualität der Daten
 - Schlüsselkennzahl RSSI
- Messaufbau
- Messungen
- Ergebnisse

Motivation

- Wireless Ethernet findet immer mehr und mehr Anwendungsfelder mit Echtzeitanforderungen.
- Die Eignung eines Wireless Netzwerkes für diese Art der Nutzung ist nicht trivial auszumessen oder gar zu berechnen.
- Es existieren Messbare Größen, aber welche Rolle spielen sie und kann man auf ihrer Basis Entscheidungen treffen?
- Aktives Messen als Ergänzung dieser Kennzahlen
- Entscheidende Frage: Wie korrelieren diese beiden?

Messmethodik

- IPPM Messsysteme gewinnen die Folgenden Messwerte über ins Netz injizierte Pakete:
 - One Way Delay
 - One Way Delay Variation
 - One Way Packet Loss
 - Reordering
 - Duplicate Packets
- Wireless Ethernet Netzwerkkarten stellen zusätzliche Messwerte zur Verfügung

Messmethodik – Datengewinnung

- WLAN Daten werden über eine Linux Kernelschnittstelle zur Verfügung gestellt.
- Möglichkeit 1: Abruf im IPPM Messprogramm selbst
 - Sehr zeitnah möglich
 - Abfragen komplex, beeinflussen damit die Laufzeit von Messungen
- Möglichkeit 2: Abruf über ein Hilfsprogramm in Intervallen
 - Einstellbarkeit des Intervalls ermöglicht es, praktisch keine Beeinflussung zwischen den Messungen zu haben.
 - Intervall muss klein genug gewählt werden um auch kleine Schwankungen korrekt zu erfassen.
 - Zusätzlicher Parameter in den Messungen

Messmethodik – Qualität der Diagnosedaten

- Wireless Kernel Extensions von Linux übergeben drei Werte
 - Link Quality (aktuell/maximal)
 - Signal Level
 - Noise Level
- Signal/Noise Level nur ungenau spezifiziert
- Link Quality ist vom Kartentreiber beliebig setzbar
- Beste Informationsquelle hierzu: Treiberquelltexte und Spezifikationen des Herstellers

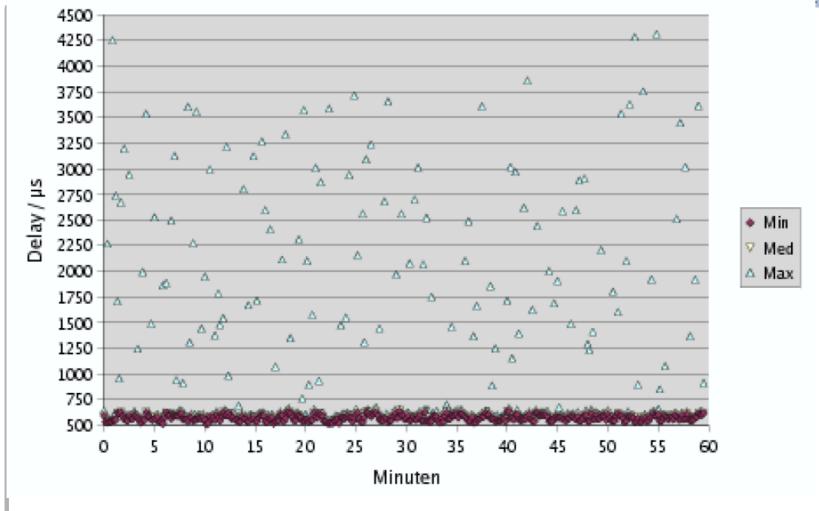
Messmethodik - RSSI

- Received Signal Strength Indicator
- Hardwareinterner Wert, genutzt für:
 - Collision Avoidance / Clear Channel Threshold
 - Antenna Diversity
 - Wireless Distribution System / Roaming Threshold
- Korreliert meist mit einem physikalischen Wert (Empfangsleistung o.ä.)
- Ganzzahlig zwischen 0 und RSSI_Max (Herstellerabhängig)
- Vergleich zwischen verschiedenen Chipsets damit unmöglich

Messaufbau

- Zwei identische Messstationen (PC-Architektur)
- NetGear WG311T Wireless Karten 108 MBit/s, 802.11g
- Kommunizieren im Ad-Hoc Modus direkt zwischen den Karten, kein Access Point
- Fedora Core 3 Linux als Betriebssystem
- Zeitsynchronisation über gekreuzte Ethernetkabel zwischen beiden Stationen per NTP
- Madwifi Treiber zur Ansteuerung der Karten
 - Hardware Abstraction Layer liegt nur in Binärcode vor
 - Einbindung dessen in die Linux-Schnittstellen jedoch als Quelltext verfügbar, gibt einblick in die verfügbaren Diagnosedaten
 - RSSI Wert wird als Messwert "Link Quality" übergeben
 - Empfangsstärke (in dB-Milliwatt) = RSSI 95

Messaufbau - Softwaresetup

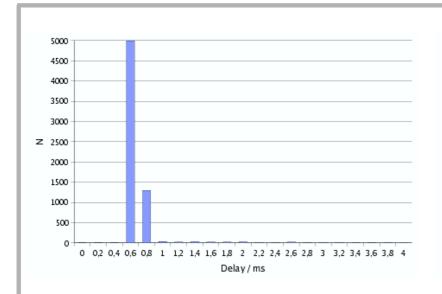


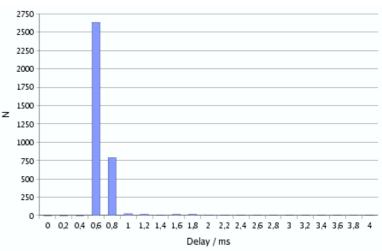
- Neben Betriebssystem an sich laufen nur zwei weitere Prozesse
- IPPM-Messsoftware
- Perl-Script zur Auswertung der Wireless-Messwerte

Messungen

WWW: http://www.win-labor.dfn.de Mail: win-labor@dfn.de

Messungen




- Eine wirkliche Korrelation zwischen den IPPM Kennzahlen OWD und OWDV war nicht festzustellen
- Einige Messwerte zeigten eine leichte Indikation, stellten sich später aber als unbrauchbar heraus (Uhrdrift als Ursache)
- RSSI-Wert kann sehr gering werden, und trotzdem gleichen sich die Messwerte mit denen bei guter Empfangsqualität
- Kommt es bei weiterem sinken der Qualität zu einem Totalausfall, löst dies Paketverluste aus, keine zusätzlichen Queueing Delays oder Retransmits
- Vergleichbares gilt deshalb für die Datenrate, solange die Karte nicht aufgrund mangelnder Qualität in eine niedrigere Übertragungsgeschwindigkeit übergeht

Messungen – Szenarien

- Aufbau von verschiedenen Szenarien bei variierender Empfangsqualität und Sendeleistungen
- Messwerte werden zur einfacheren Analyse als Häufigkeitsverteilung dargestellt
- Exemplarisch oben zwei Messreihen bei 11 MBit/s mit hohem/niedrigem RSSI-Wert durch höhere Distanz und einigen Hindernissen

Zusammenfassung

- Keine signifikanten Zusammenhänge zwischen OWD und RSSI in einem 1-1 Testaufbau
- Eine Erhöhung der Komplexität des Testaufbaus würde möglicherweise mehr Phänomene zu Tage treten lassen
- Ein weiterer Aspekt zur Verbesserung wäre die Erweiterung der Diagnosemöglichkeiten auf Hardwareebene, und insbesondere spezieller Treiber dafür
- 1-1 Messungen zu erweitern auf unbeteiligte Stationen zur Erhöhung der Praxisrelevanz – aber unter Beachtung der Einschränkungen bezüglich der Hardwareseite der Messungen

Kontakt

- Internet
 - http://www.win-labor.dfn.de/
- E-Mail
 - win-labor@dfn.de
- Telefon
 - **+49 9131 85-28800**

WWW: http://www.win-labor.dfn.de Mail: win-labor@dfn.de