
© 2019 Accemic Technologies GmbH. All Rights Reserved.

1

Test und Fehlersuche in
komplexen autonomen System

Albert Schulz – albert.schulz@accemic.com

Tagung „Echtzeit 2019“ 21.11.2019

© 2019 Accemic Technologies GmbH. All Rights Reserved.

2

Outline

• Introduction

• Hardware Trace

• Dynamic analysis
• Example: safety-critical control system

• Realtime Code Coverage

• Conclusions

© 2019 Accemic Technologies GmbH. All Rights Reserved.

3

Introduction

• Trend in current systems:
• autonomous, long runtimes without human interaction

• Increased complexity → need for multi-core

• Increased chance of bugs, even in post-release code

McKinsey & Company:
"Snowballing complexity

is causing
significant software-

related quality issues …“

Capers Jones:
~5% Post-release defects

relative failure
probability

A
v

e
ra

ge
 L

in
e

s
o

f
C

o
d

e
 P

e
r

C
ar

2005
0

2010 2015 2020 2025

100M

200M

300M

400M

500M

600M

700M

NXP:
Tomorrow s Vehicle

6x more lines of code

© 2019 Accemic Technologies GmbH. All Rights Reserved.

4

Introduction

• Certification is challenging for safety-critical systems

• Software instrumentation helps, but interferes with functional Code
• e.g. code-coverage adds additional code for measurements (e.g. gcov)

• Software tracing techniques with high overhead in time and space (printf)

• Multi-core makes static analysis challenging

• Certified code contains often additional test code
• Requires memory space and computation time

• Alternatives?

© 2019 Accemic Technologies GmbH. All Rights Reserved.

5

CEDARtools® Hardware Platform
(FPGA Board)

DuT
(Intel, ARM, PPC, Aurix)

T
ra

ce
 B

u
ff

e
r

a
n

d
 C

o
n

ce
n

tr
a

to
r

Trace Data
Pre-processing

and
Control Flow

Reconstruction

Branch
Counter

Branches

Source Code

Periphery
trace

Per

Mem

Mem

CPU0

CPU1

CPU2

CPUn

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Branch
counts

T
ra

ce
 P

o
rt

Compiler

Configuration

Debug
Server

high-speed
serial

P
o

st
 p

ro
ce

ss
in

g

Object code
coverage

Debug information

Binary

M
a

p
p

in
g

Source code
coverage

Hardware Trace

Trace-Information:
• Control-Flow (Branches, Function calls)
• OS-relevant events (context switches),
• Data access (address, data)*,
• Application-specific events (lightweight instrumentation)

Processors with Hardware-Trace Infrastructure:
• Infineon Aurix: Emulation Device
• ARM Cortex-A/-M/-R: CoreSight
• Intel x86: IntelPT
• NXP QorIQ P-series, T-series: Debug Assist Module

*depends on Processor capabilities

© 2019 Accemic Technologies GmbH. All Rights Reserved.

6Hardware Trace
State-of-the-art: Offline Analysis (e.g. Lauterbach TRACE32)

Trace data
generation

by processor internal
hardware structures

Trace data buffer
by a few GByte RAM

buffer

Trace data
processing

usually magnitudes
slower then
generation

User interface
for observation result

output

some GBit/s

Trace-Buffer limits observation time

© 2019 Accemic Technologies GmbH. All Rights Reserved.

7Hardware Trace Processing in Realtime

CEDARtools® Technology

Multi Gbps
Synchronization

Processor Live Synchronized
Digital Twin

Live Rule
Processing

© 2019 Accemic Technologies GmbH. All Rights Reserved.

8Dynamic Analysis
Non-intrusive Continuous Timing Verification

•Use case: Safety-critical application to control
breaks

•Requirement:
•Ensure Timing Constraint from

pressing the breaks, until their activation
•Constraint: Should react within 5ms!

• run_task() executed
periodically every second

• Calculations have variable
execution durations
• simulates dynamic events due to

multicore environment

• Breaks are only activated
sometimes, depending on the
break angle

Implementation

© 2019 Accemic Technologies GmbH. All Rights Reserved.

9Dynamic Analysis
Non-intrusive Continuous Timing Verification

•Use case: Safety-critical application to control
breaks

•Requirement:
•Ensure Timing Constraint from

pressing the breaks, until their activation
•Constraint: Should react within 5ms!

Implementation

Constraints Specification (TeSSLa)

© 2019 Accemic Technologies GmbH. All Rights Reserved.

10

Non-intrusive Continuous Timing Verification

Dynamic Analysis

CEDARtools® Hardware Platform (FPGA Board)

DuT (Intel® AtomTM, ARM® Cortex®,
QorIQ® PPC, AurixTM)

T
ra

ce
 B

u
ff

e
r

a
n

d
 C

o
n

ce
n

tr
a

to
r

Trace Data
Pre-processing

and
Control Flow

Reconstruction

Event Stream
Analysis

Events

C-Code

Binary

Observation
Configuration

TeSSLa Compiler

Observation
Specification

Monitor Specification
(in TeSSLa language)

Monitor
Configuration

STM/
ITM

Per

Mem

Mem

CPU0

CPU1

CPU2

CPUn

PFT/
ETM

PFT/
ETM

PFT/
ETM

PFT/
ETM

 CEDARtools® Elements

Report

Specs

Object code,
debug symbols

T
ra

n
sm

is
si

o
n

T
ra

ce
 P

o
rt

C-Compiler Analyser

Front End

instruction address of
read_break_sensor

instruction address of
activate_breaks

Test Server
(GAMMA V)

Log

live Chart

Connected to CEDAR System.

7.1165ms: latency = 4662878 (6.9943ms)

7.1165ms: test_passed = 0

1014.11ms: latency = 5328400 (7.9926ms)

1014.11ms: test_passed = 0

2019.10ms: latency = 3996424 (5.9946ms)

2019.10ms: test_passed = 0

3028.09ms: latency = 6660375 (9.9905ms)

3028.09ms: test_passed = 0

4031.09ms: latency = 2664410 (3.9966ms)

4031.09ms: test_passed = 1

5032.09ms: latency = 1332398 (1.9985ms)

5032.09ms: test_passed = 1

in read_break_sensor : Events[Unit]

in activate_breaks : Events[Unit]

def latency : Events[Int] := calc_latency(stimulus = read_break_sensor,

 response = activate_breaks)

Check if event chain took less than 5ms (3.333.333 CPU cycles)

def test_passed : Events[Bool] := if (latency < 3333333) then true else false

out latency

out test_passed

domain specific library

def calc_latency[A,B](stimulus: Events[A], response: Events[B])

 := { return time(response) - last(time(stimulus), response)}

void run_task()

{

 float break_angle = read_break_sensor();

 int strength;

 strength = calculate_break_strengh_for_angle(break_angle);

 int motor_control;

 motor_control = calculate_motor_control_value(strength);

 if (motor_control == 1) {

 activate_breaks();

 }

 else if (motor_control == -1) {

 release_breaks();

 }

}

Multiple high-level specifications
can be monitored in parallel

© 2019 Accemic Technologies GmbH. All Rights Reserved.

11Dynamic Analysis
Non-intrusive Continuous Code Coverage

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX)

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffers

Allows measurements on release-code

© 2019 Accemic Technologies GmbH. All Rights Reserved.

12Dynamic Analysis
Non-intrusive Continuous Code Coverage

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX)

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffers

Allows measurements on release-code

© 2019 Accemic Technologies GmbH. All Rights Reserved.

13

• Novel approach for test and debugging based on hardware trace
presented

• New potential due to
• Non-intrusiveness

• Higher chance to catch sporadic issues using long-running tests

• Code coverage on integration and system tests

• With goal of increased product quality, reliability and decrease fatal
post-release defects

Conclusions

© 2019 Accemic Technologies GmbH. All Rights Reserved.

14Thanks for your Attention

Contact:

Accemic Technologies GmbH

Franz-Huber-Str. 39

83088 Kiefersfelden

www.accemic.com

Contact partner:

Dr. Alexander Weiss

aweiss@accemic.com

+49 8033 6039795

Presenter:

Albert Schulz

aschulz@accemic.com

This work was funded in part by the EU
H2020 Project 732016 COEMS and the
BMBF Project ARAMiS II (ID 01 IS
16025)

mailto:aweiss@accemic.com
mailto:aschulz@accemic.com

© 2019 Accemic Technologies GmbH. All Rights Reserved.

15Backup Slides

© 2019 Accemic Technologies GmbH. All Rights Reserved.

16Dynamic Analysis
@ Object Code Level

➢ Non-intrusive monitoring and unlimited monitoring period (up to hours, days).

➢ Structural code coverage can be measured at all test levels.

➢ Measurable statement of the quality of High-Level Requirements.

➢ Measurable statement of the quality of High-Level Tests.

Software

Low-Level

Requirements

Software

High-Level

Requirements

System

Requirements

Software

Design

Software

Architecture

System

Architecture

Implementation – Source Code

SW Unit Test

SW

Integration Test

HW/SW

Integration Test

System Test

Equivalent

(Equivalent)

Source code level

Object code /
executable object code

level

Possible

Possible

Possible

Possible

Possible

Possible

Structural coverage

Structural Code Coverage
measured: ~50 %

Remaining Structural Code Coverage
to be evidenced:

(95% - 50%) = 45%

© 2019 Accemic Technologies GmbH. All Rights Reserved.

17Dynamic Analysis
@ Object Code Level

Save 30..40% of today’s
effort to design structural

tests

Measurable statement of
the quality of

High Level Requirements Measurable statement of
the quality of High Level Tests

Increased effectivity of
High Level Tests

Software

Low-Level

Requirements

Software

High-Level

Requirements

System

Requirements

Software

Design

Software

Architecture

System

Architecture

Implementation – Source Code

SW Unit Test

SW

Integration Test

HW/SW

Integration Test

System Test

Hardware-based monitoring infrastructure is integrated in most processors - and already paid by you …

Mind trace interface access opportunities:

- in your hardware system requirement specifications and

- in your buying decisions!

© 2019 Accemic Technologies GmbH. All Rights Reserved.

18Dynamic Analysis
Object Code vs. Source Code Level (see also CAST 17)

PROs

• It can demonstrate full code coverage at the object code level.

• It can support more “valid” coverage.

• It is closer to the final airborne software .

• It can be implemented with source code programming

language independence.

• It can reduce time-consuming manual analysis.

• No instrumentation is required.

• It can also be used for the objective measurement of the

quality of integration and system tests.

• It can reduce the test effort by substituting low-level tests.

•Incomplete requirements and tests are found at the system level

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.

© 2019 Accemic Technologies GmbH. All Rights Reserved.

19Dynamic Analysis
Object Code vs. Source Code Level (see also CAST 17)

CONs

• Source code to object code traceability can be difficult
(depending on compiler support).

• Optimizing compiler can use difficult-to-monitor flags to process
multi-conditions. (we are working on solutions…)

• Typical tools usually use the source code level.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.

