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Introduction

• Trend in current systems:
• autonomous, long runtimes without human interaction

• Increased complexity → need for multi-core

• Increased chance of bugs, even in post-release code

McKinsey & Company: 
"Snowballing complexity 

is causing 
significant software-

related quality issues …“ 

Capers Jones:
~5% Post-release defects
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Introduction

• Certification is challenging for safety-critical systems

• Software instrumentation helps, but interferes with functional Code
• e.g. code-coverage adds additional code for measurements (e.g. gcov)

• Software tracing techniques with high overhead in time and space (printf)

• Multi-core makes static analysis challenging

• Certified code contains often additional test code
• Requires memory space and computation time

• Alternatives?
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CEDARtools® Hardware Platform 
(FPGA Board)
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Hardware Trace

Trace-Information:
• Control-Flow (Branches, Function calls)
• OS-relevant events  (context switches),
• Data access (address, data)*,
• Application-specific events (lightweight instrumentation)

Processors with Hardware-Trace Infrastructure:
• Infineon Aurix: Emulation Device
• ARM Cortex-A/-M/-R: CoreSight
• Intel x86: IntelPT
• NXP QorIQ P-series, T-series: Debug Assist Module

*depends on Processor capabilities
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State-of-the-art: Offline Analysis (e.g. Lauterbach TRACE32)

Trace data 
generation

by processor internal 
hardware structures 

Trace data buffer
by a few GByte RAM 

buffer

Trace data 
processing

usually magnitudes 
slower then 
generation

User interface
for observation result 

output

some GBit/s

Trace-Buffer limits observation time
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CEDARtools® Technology

Multi Gbps 
Synchronization  

Processor Live Synchronized 
Digital Twin

Live Rule 
Processing
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Non-intrusive Continuous Timing Verification

•Use case: Safety-critical application to control 
breaks

•Requirement:
•Ensure Timing Constraint from 

pressing the breaks, until their activation
•Constraint: Should react within 5ms!

• run_task() executed 
periodically every second

• Calculations have variable 
execution durations
• simulates dynamic events due to 

multicore environment

• Breaks are only activated
sometimes, depending on the 
break angle

Implementation
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Non-intrusive Continuous Timing Verification

•Use case: Safety-critical application to control 
breaks

•Requirement:
•Ensure Timing Constraint from 

pressing the breaks, until their activation
•Constraint: Should react within 5ms!

Implementation

Constraints Specification (TeSSLa)
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Non-intrusive Continuous Timing Verification

Dynamic Analysis

CEDARtools®  Hardware Platform (FPGA Board)

DuT (Intel® AtomTM, ARM® Cortex®, 
QorIQ® PPC, AurixTM)
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read_break_sensor
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(GAMMA V)

Log

live Chart

Connected to CEDAR System.

7.1165ms: latency = 4662878 (6.9943ms)

7.1165ms: test_passed = 0

1014.11ms: latency = 5328400 (7.9926ms)

1014.11ms: test_passed = 0

2019.10ms: latency = 3996424 (5.9946ms)

2019.10ms: test_passed = 0

3028.09ms: latency = 6660375 (9.9905ms)

3028.09ms: test_passed = 0

4031.09ms: latency = 2664410 (3.9966ms)

4031.09ms: test_passed = 1

5032.09ms: latency = 1332398 (1.9985ms)

5032.09ms: test_passed = 1

in read_break_sensor : Events[Unit]

in activate_breaks   : Events[Unit]

def latency : Events[Int] := calc_latency(stimulus = read_break_sensor, 

                                          response = activate_breaks)

# Check if event chain took less than 5ms (3.333.333 CPU cycles)

def test_passed : Events[Bool] := if (latency < 3333333) then true else false

out latency

out test_passed

# domain specific library

def calc_latency[A,B](stimulus: Events[A], response: Events[B]) 

    := { return time(response) - last(time(stimulus), response)}

void run_task()

{

  float break_angle = read_break_sensor();

  

  int strength;

  strength = calculate_break_strengh_for_angle(break_angle);

  int motor_control;

  motor_control = calculate_motor_control_value(strength);

  if (motor_control == 1) {

    activate_breaks();

  }

  else if (motor_control == -1) { 

    release_breaks();

  }

}

Multiple high-level specifications 
can be monitored in parallel



© 2019 Accemic Technologies GmbH. All Rights Reserved. 

11Dynamic Analysis
Non-intrusive Continuous Code Coverage

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX) 

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffers

Allows measurements on release-code
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• Novel approach for test and debugging based on hardware trace 
presented

• New potential due to
• Non-intrusiveness

• Higher chance to catch sporadic issues using long-running tests

• Code coverage on integration and system tests

• With goal of increased product quality, reliability and decrease fatal 
post-release defects

Conclusions



© 2019 Accemic Technologies GmbH. All Rights Reserved. 

14Thanks for your Attention

Contact: 

Accemic Technologies GmbH

Franz-Huber-Str. 39

83088 Kiefersfelden

www.accemic.com

Contact partner:

Dr. Alexander Weiss

aweiss@accemic.com

+49 8033 6039795

Presenter:

Albert Schulz

aschulz@accemic.com

This work was funded in part by the EU 
H2020 Project 732016 COEMS and the 
BMBF Project ARAMiS II (ID 01 IS 
16025)

mailto:aweiss@accemic.com
mailto:aschulz@accemic.com


© 2019 Accemic Technologies GmbH. All Rights Reserved. 

15Backup Slides



© 2019 Accemic Technologies GmbH. All Rights Reserved. 

16Dynamic Analysis
@ Object Code Level

➢ Non-intrusive monitoring and unlimited monitoring period (up to hours, days).

➢ Structural code coverage can be measured at all test levels.

➢ Measurable statement of the quality of High-Level Requirements.

➢ Measurable statement of the quality of High-Level Tests.

Software
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(Equivalent)

Source code level

Object code / 
executable object code 

level

Possible
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Possible

Possible

Structural coverage

Structural Code Coverage 
measured: ~50 %

Remaining Structural Code Coverage
to be evidenced: 

(95% - 50%) = 45% 



© 2019 Accemic Technologies GmbH. All Rights Reserved. 

17Dynamic Analysis
@ Object Code Level

Save 30..40% of today’s  
effort to design structural 

tests

Measurable statement of 
the quality of 

High Level Requirements Measurable statement of 
the quality of High Level Tests

Increased effectivity of 
High Level Tests
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Hardware-based monitoring infrastructure is integrated in most processors - and already paid by you …

Mind trace interface access opportunities:

- in your hardware system requirement specifications and

- in your buying decisions!
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18Dynamic Analysis
Object Code vs. Source Code Level (see also CAST 17)

PROs

• It can demonstrate full code coverage at the object code level.

• It can support more “valid” coverage.

• It is closer to the final airborne software .

• It can be implemented with source code programming

language independence.

• It can reduce time-consuming manual analysis.

• No instrumentation is required.

• It can also be used for the objective measurement of the

quality of integration and system tests. 

• It can reduce the test effort by substituting low-level tests.

•Incomplete requirements and tests are found at the system level

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017 
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.
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19Dynamic Analysis
Object Code vs. Source Code Level (see also CAST 17)

CONs

• Source code to object code traceability can be difficult
(depending on compiler support).

• Optimizing compiler can use difficult-to-monitor flags to process
multi-conditions. (we are working on solutions…)

• Typical tools usually use the source code level.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017 
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.


