React in Time

Event-based Design of Time-triggered
Distributed Real-time Systems

Florian Franzmann® Tobias Klaus® Fabian Scheler?
Peter Ulbrich! Wolfgang Schroder-Preikschat!

Lehrstuhl fiir Verteilte Systeme und Betriebssysteme
Friedrich-Alexander-Universitat Erlangen-Niirnberg
{franzmann|klaus|ulbrich|wosch}@cs.fau.de

2Process Industries and Drives, Siemens AG
fabian.scheler@siemens.com

13th November 2015

Introduction

Steve Jurvetson (cc-by-2.0)

m Cars are becoming more autonomous ~~» more software
= Consolidation ~» mixed-criticality software
~> Increasing safety demands

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Introduction

Introduction

Steve Jurvetson (cc-by-2.0)

m Cars are becoming more autonomous ~~» more software
= Consolidation ~» mixed-criticality software
~> Increasing safety demands
m Current trend: Event-triggered real-time systems
= Easy to build
= Hard to verify

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Introduction

Introduction

Steve Jurvetson (cc-by-2.0)

m Cars are becoming more autonomous ~~» more software
= Consolidation ~» mixed-criticality software
~> Increasing safety demands
m Current trend: Event-triggered real-time systems
= Easy to build
= Hard to verify
m One solution: Time-triggered real-time systems
= More difficult design process

= Verified by construction

ff, tk, fs, pu, wosch React in Time (13.11.2015) Introduction

Introduction

B Problem: Important design decisions made early
= Target hardware ~» what can be bought right now
= Target paradigm ~- safety demands

m Change after the fact expensive
~ sometimes complete redesign

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Introduction

Introduction

B Problem: Important design decisions made early

= Target hardware ~» what can be bought right now
m Target paradigm ~- safety demands

m Change after the fact expensive
~+ sometimes complete redesign

B |dea: postpone the decision
~~ tool-based transformation

Our approach: Compiler-based

= Handles legacy software, model-based software
m Extraction of real-time properties

m Late decision w.r.t. target platform, paradigm

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Introduction

Table of contents

Abstract Representation of Real-Time Systems
The RTSC
Atomic Basic Blocks

Multicore
State of the Art
Challenges

Distributed Systems
Target-System Model
Partitioning Applications

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Introduction

The RTSC's Pipeline

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation—The RTSC

Abstract Representation of RTSes

TASK (task1){ TASK (task2){

GetResource (SPL); el o
ReceiveSPIData (&Press); 2

ReceiveSPIData (&data);
ReleaseResource (SPI); ReleaseResource((SPI)?’
H

ActivateTask (task2); ééédMessage (Message,

: &data);
})

TASK (task3){

ReceiveMessage (Message,
&mydata);

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

TASK (task1){ TASK (task2){

GetResource (SPI);
SendSPIData (&conf);
ReceiveSPIData (&data);
ReleaseResource (SPI);

GetResource (SPI);
ReceiveSPIData (&Press);

SendMessage (Message,

ActivateTask (task2);
} Tt &data);

Mutual Exclusion
TASK (task3){

ReceiveMessage (Message,
&mydata);

ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

TASK (task1){ TASK (task2){

GetResource (SPI);
SendSPIData (&conf);
ReceiveSPIData (&data);
ReleaseResource (SPI);

GetResource (SPI);
ReceiveSPIData (&Press);
ReleaseResource (SPI);

SendMessage (Message,

(ActivateTask (task2);

&data);
}) ata)
Global Control Flow
TASK (task3){ - Predecessor/Successor
200 - Directed Dependency
ReceiveMessage (Message, - Timing Information(Delay)
&mydata);
}

ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

TASK (task1){ TASK (task2){

GetResource (SPL); el o
ReceiveSPIData (&Press); 2

ReceiveSPIData (&data);
ReleaseResource (SPI); ReleaseResource((SPI)?’
H

SendMessage (Message,
&data);

ActivateTask (task2);

]

Global Data Flow
- Predecessor/Successor
- Directed Dependency

TASK (task3){

ReceiveMessage (Message,
&mydata);

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

TASK (task1){ TASK (task2){

cee GetResource (SPI);
R PI);

Get CERUrEs (SPI); . SendSPIData (&conf);

ReceiveSPIData (&Press); ReceiveSPIData (&data);

ReleaseResource (SPI); ReleaseResource (SPI)"

5

ActivateTask (task2); éé;]dMessage (Message
B

, ... &data);

-

TASK (task3){

ReceiveMessage (Message,
&mydata);

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

TASK (task1){ TASK (task2){

GetResource (SPI);
SendSPIData (&conf);
ReceiveSPIData (&data);]
ReleaseResource (SPI);

GetResource (SPI);
(ReceivesPIData (&Press);
ReleaseResource (SPI);

SendMessage (Message,

ActivateTask (task2);
} Tt &data);

-

TASK (task3){

ReceiveMessage (Message,
&mydata);

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

TASK (task2){

TASK (task1){

...]
GetResource (SPI);
SendSPIData (&conf);
ReceiveSPIData (&data);]
ReleaseResource (SPI);

GetResource (SPI);
(ReceivesPIData (&Press);
ReleaseResource (SPT):

ActivateTask (task2); ééédMessage (Message
5

Tt &data);
})

-

TASK (task3){

ReceiveMessage (Message,
&mydata);

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Abstract Representation of RTSes

@\ ABBl} ABBS]

(..

ABB 6
[ReceiveSPIData (&Pr‘esA;B)E" 3 SRR (CEmA)E]
2 ReceiveSPIData (&data);
ABB 3
(T ABB 7
| ABB 4 =
(-)
@\ Global ABB-Graph
ABB 8 - Includes all dependencies
(e) - No OS-Mechanisms
l ABB 9

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Abstract Representation— ABBs

Multicore

m Multicore systems are up to standard today
= E.g., Automotive industry leverages multicores for consolidation
= Deploy multiple applications on same ECU
~ Consequence: mixed-criticality systems

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — State of the Art

Multicore

m Multicore systems are up to standard today

= E.g., Automotive industry leverages multicores for consolidation
= Deploy multiple applications on same ECU
~ Consequence: mixed-criticality systems

B Widely applicable algorithms for time-triggered design:

= Optimal, branch and bound, feature complete
~ Assignment: Peng etal., 1997% Scheduling: Abdelzaher etal., 19992

B But: Nobody uses these ~» Why?

Peng, Shin, Abdelzaher: Assignment and scheduling communicating periodic tasks in distributed real-time
systems. |EEE Transactions on Software Engineering, vol. 23, no. 12, pp. 745-758, Dec 1997

2
Abdelzaher, Shin: Combined task and message scheduling in distributed real-time systems. |EEE Transactions on
O Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179-1191, Nov 1999

ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — State of the Art 7

Multicore

m Multicore systems are up to standard today

= E.g., Automotive industry leverages multicores for consolidation
= Deploy multiple applications on same ECU
~ Consequence: mixed-criticality systems

B Widely applicable algorithms for time-triggered design:

= Optimal, branch and bound, feature complete
~ Assignment: Peng etal., 1997% Scheduling: Abdelzaher etal., 19992

B But: Nobody uses these ~» Why?

Experience with RTSC:

Numerous adaptations for multicore necessary

Peng, Shin, Abdelzaher: Assignment and scheduling communicating periodic tasks in distributed real-time
systems. |EEE Transactions on Software Engineering, vol. 23, no. 12, pp.745-758, Dec 1997

2Abdelzaher, Shin: Combined task and message scheduling in distributed real-time systems. |EEE Transactions on
O Parallel and Distributed Systems, vol. 10, no. 11, pp. 1179-1191, Nov 1999

ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — State of the Art 7

Model — Model

Dy
D, D4 Dy Ds D

rr [P f4 Is Te
£l

m ABBs derived from tasks ~~ ABB deadline, release time too
= Deadline/release time part of cost function
~» Solutions for assignment indistinguishable for assignment algo
~» Cost function non-monotonous

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — Challenges

Model — Model

Dy
D, D4 Dy Ds D

It 23 24 Is 13
fy

m ABBs derived from tasks ~~ ABB deadline, release time too
= Deadline/release time part of cost function
~» Solutions for assignment indistinguishable for assignment algo
~» Cost function non-monotonous

Solution:

Shift deadlines/release times to honour WCETs

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — Challenges

Execution Environment

2 =4 2
r r r

2 2
Ti || ABB, |+ ABB, | ABB " s r2 5 3 6
oo)-{pof{roe [> (Aee,) (Ae,) (Aes,) (Aee.) (Aeey) (rey)
] D, D, 2 5 Ds

T2 |(aBB,}{ABB, | { ABSB, D, D De

rr D;

m Original scheduling algorithm shifts deadlines to enforce dependencies

= Similar to our approach in assignment algorithm
~ Unnecessary expensive context switches

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — Challenges 9

Execution Environment

g
T.: ||aBB, |- ABB, |-{ ABB 122 o
e e))
Ty [ABB4]—-[ABBs]—'[ABBG] D123 Dase

I D;

m Original scheduling algorithm shifts deadlines to enforce dependencies

= Similar to our approach in assignment algorithm
~ Unnecessary expensive context switches

Solution:

Use explicit ready queue to enforce dependencies

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — Challenges 9

Optimization

250.0 A optimized ==
naive I
200.0 -
150.0 -
100.0 -

50.0 +

analyzable systems —

0.0 -
1.0 1.2 1.4 1.6 1.8 2.0
utilization —

m Original assignment algo chooses arbitrary solution if cost the same
~~ Exploration of large parts of search space

0 ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — Challenges 10

Optimization

250.0 A optimized ==
naive I
200.0 -
150.0 -
100.0 -

50.0 +

analyzable systems —

0.0 -
1.0 1.2 1.4 1.6 1.8 2.0
utilization —

m Original assignment algo chooses arbitrary solution if cost the same
~~ Exploration of large parts of search space
Optimization: prefer solutions closer to algorithmic termination

Effect: Run-time reduced by almost 50 %

0 ff, tk, fs, pu, wosch React in Time (13.11.2015) Multicore — Challenges 10

Distributed Systems

1

0
01
04

e
5

oS

Ty
=
/

_/

[(H1
W

1
8

m Multicore system only small part of real-world systems
B Automotive system contains multiple busses and many ECUs
Interaction of multiple communication systems

|dea:
Extend the RTSC to generate distributed time-triggered systems

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems

Target-System Model

B Real-time-capable multicore special case of distributed system
= Processing nodes
= Scratchpad memory
= On-chip communication network
~> Problem solved?

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems—System Model

12

Target-System Model

B Real-time-capable multicore special case of distributed system
Processing nodes

Scratchpad memory

On-chip communication network

~> Problem solved?

Problems:

m Distributed systems often heterogeneous

= Latency load-dependent

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems—System Model

12

Target-System Model

B Real-time-capable multicore special case of distributed system
Processing nodes

Scratchpad memory

On-chip communication network

~> Problem solved?

Problems:

m Distributed systems often heterogeneous

= Latency load-dependent

~> Detailed system model necessary

s Complete communication stack

= Subsystems

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems—System Model

12

Partitioning Applications

Application fragments must be assigned to nodes
Problem: Access to shared memory
m Clumsy partitioning ~~ lots of message passing

~ Competition for global communication media

~+ Negative impact on other nodes

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems— Partitioning

13

Partitioning Applications

Application fragments must be assigned to nodes

Problem: Access to shared memory

m Clumsy partitioning ~~ lots of message passing
~ Competition for global communication media

~+ Negative impact on other nodes

Approach: Compiler knows data flow

= Analyse to find points of minimal local state

m Then decide where to cut optimally for minimal message exchange

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems— Partitioning 13

Extracting Inter-Application Dependencies

Aim: Consolidation of legacy software

~> Formerly independent software on same node

~> New shared resources: memory, sensors, ...
Current state:
RTSC extracts dependencies within an application

Now we need:
Inter-application dependency extraction

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems— Partitioning

14

Codesign

http://www.sartre-project.eu

m So far: Distributed system within one car
Future work: Platooning of multiple cars

Research focus: Codesign of communication, control, real-time
= Skillful partitioning of real-time applications

= Extending Matlab models for codesign

= Latency and loss model

= Generation of verifiable components

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Distributed Systems— Partitioning

15

http://www.sartre-project.eu

Conclusion

Real-Time Systems Compiler

= Tool for automated transformations on real-time systems
m Generates time-triggered systems ~- easier verification
m Currently handles singlecore, multicore

= Numerous adaptations to existing algorithms necessary

Current work on distributed systems within one car

m Better system model necessary
= Optimal cutting of applications necessary

= Colocation of applications introduces new shared resources

Future work: Platooning of multiple cars

O ff, tk, fs, pu, wosch React in Time (13.11.2015) Conclusion

16

	Abstract Representation of Real-Time Systems
	The RTSC
	Atomic Basic Blocks

	Multicore
	State of the Art
	Challenges

	Distributed Systems
	Target-System Model
	Partitioning Applications

